Analysis of local molecular motions of aromatic sidechains in proteins by 2D and 3D fast MAS NMR spectroscopy and quantum mechanical calculations.
نویسندگان
چکیده
We report a new multidimensional magic angle spinning NMR methodology, which provides an accurate and detailed probe of molecular motions occurring on timescales of nano- to microseconds, in sidechains of proteins. The approach is based on a 3D CPVC-RFDR correlation experiment recorded under fast MAS conditions (ν(R) = 62 kHz), where (13)C-(1)H CPVC dipolar lineshapes are recorded in a chemical shift resolved manner. The power of the technique is demonstrated in model tripeptide Tyr-(d)Ala-Phe and two nanocrystalline proteins, GB1 and LC8. We demonstrate that, through numerical simulations of dipolar lineshapes of aromatic sidechains, their detailed dynamic profile, i.e., the motional modes, is obtained. In GB1 and LC8 the results unequivocally indicate that a number of aromatic residues are dynamic, and using quantum mechanical calculations, we correlate the molecular motions of aromatic groups to their local environment in the crystal lattice. The approach presented here is general and can be readily extended to other biological systems.
منابع مشابه
Closed-form Molecular Mechanics Formulations for the 3D Local Buckling and 2D Effective Young’s Modulus of the Nanosheets
A closed form three-dimensional solution is presented for determination of the local buckling (cell buckling) load of the nanosheets. Moreover, an expression is proposed for the effective 2D Young’s modulus of the unit cell of the nanosheet. In this regard, a three-dimensional efficient space-frame-like geometrical model with angular and extensional compliances is considered to investigate stab...
متن کاملQuantum Chemical Modeling of 1-(1, 3-Benzothiazol-2-yl)-3-(thiophene-5-carbonyl) thiourea: Molecular structure, NMR, FMO, MEP and NBO analysis based on DFT calculations
In the present work, the quantum theoretical calculations of the molecular structure of the 1-(1, 3-Benzothiazol-2-yl)-3-(thiophene-5-carbonyl) thiourea has been predicted and are evaluated using Density Functional Theory (DFT) in gas phase. The geometry of the title compound was optimized by B3LYP/6-311+G and B3LYP/6-311+G* methods and the experimental geometrical parameters of the title compo...
متن کاملQuantum Chemical Modeling of N-(2-benzoylphenyl)oxalamate: Geometry Optimization, NMR, FMO, MEP and NBO Analysis Based on DFT Calculations
In the present work, the quantum theoretical calculations of the molecular structure of the (N-(2-benzoylphenyl) oxalamate has been investigated and are evaluated using Density Functional Theory (DFT). The geometry of the title compound was optimized by B3LYP method with 6-311+G(d) basis set. The theoretical 1H and 13C NMR chemical shift (GIAO method) values of the title compound are calculated...
متن کاملQuantum Chemical Modeling of 2-(Cyclohexylamino)-2-oxo-1-(quinolin-4-yl)ethyl 4-Chlorobenzoate: Molecular Structure, Spectroscopic (FT-IR, NMR, UV) Investigations, FMO, MEP and NBO Analysis Based on HF and DFT Calculations
In the present work, the quantum theoretical calculations of the molecular structure of the compound 2-(Cyclohexylamino)-2-oxo-1-(quinolin-4-yl)ethyl 4-Chlorobenzoate have been predicted using Density Functional Theory (DFT) in the gas phase. The geometry of the title structure was optimized by B3LYP/6-31+G* and HF/6-31+G* levels of theory. The theoretical 1H and 13C NMR chemical shift values o...
متن کاملSolid state separated-local-field NMR spectroscopy on half-integer quadrupolar nuclei: principles and applications to borane analysis.
New multidimensional NMR methods correlating the quadrupolar and heteronuclear dipolar interactions affecting a half-integer quadrupolar spin in the solid state are introduced and exemplified. The methods extend separated-local-field magic-angle spinning (SLF MAS) NMR techniques that have been used successfully in spin-(1)/(2) spectroscopy to the study of S >/= (3)/(2) nuclei. In our implementa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 19 31 شماره
صفحات -
تاریخ انتشار 2015